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A B S T R A C T   

Polymeric nanoparticles are highly tunable drug delivery systems that show promise in targeting therapeutics to 
specific sites within the body. Rational nanoparticle design can make use of mathematical models to organize and 
extend experimental data, allowing for optimization of nanoparticles for particular drug delivery applications. 
While rational nanoparticle design is attractive from the standpoint of improving therapy and reducing unnec
essary experiments, it has yet to be fully realized. The difficulty lies in the complexity of nanoparticle structure 
and behavior, which is added to the complexity of the physiological mechanisms involved in nanoparticle dis
tribution throughout the body. In this review, we discuss the most important aspects of rational design of 
polymeric nanoparticles. Ultimately, we conclude that many experimental datasets are required to fully model 
polymeric nanoparticle behavior at multiple scales. Further, we suggest ways to consider the limitations and 
uncertainty of experimental data in creating nanoparticle design optimization schema, which we call quanti
tative nanoparticle design frameworks.   

1. Introduction 

Nanoparticles (NPs) of myriad size and composition have been 
explored for a wide array of potential functions in medicine [1,2]. Some 
of these NP formulations are now available for clinical use [3]. Drug- 
encapsulating NPs (also called ‘nanocarriers’) have been developed to 
reduce drug side-effects, enhance drug accumulation at the target site 
(s), and deliver biologically fragile cargo such as nucleic acids [4,5]. 
Polymeric NPs are a class of NP composed of (typically biodegradable) 
polymers (e.g. poly(lactic-co-glycolic acid), or PLGA). Drug release ki
netics are based on the material and functional properties of the 
component polymers [6]. By altering the polymer composition, such as 
by incorporating poly(ethylene glycol) (PEG) into the polymer backbone 
to create amphipathic PLGA-PEG block copolymers, it is possible to 
drastically alter the pharmacokinetics of the resulting NPs [4,7]. 

The families of biodegradable polymers and their variants afford a 
great deal of versatility in polymeric NP design; NP shape, size, surface 
charge, and degradation rate are readily tunable [8–12]. Furthermore, 
polymeric NPs are eligible for numerous surface modifications including 
the conjugation of targeting moieties such as antibodies [13–15]. It is 
known that ‘NP characteristics’—which generally refers to the physi
cochemical properties of polymers and resulting NPs—have varying 
influence on NP pharmacokinetics [16–22], particularly when those 
properties influence the NP surface. Thus, finding an optimal polymeric 
NP formulation with the desired pharmacokinetic profile for a particular 
application is of intense research and clinical interest [6]. As a salient 
example, Hrkach et al. [23] used a library of over 100 polymeric NP 
formulations to optimize the pharmacokinetic profile of a docetaxel- 
loaded, prostate cancer-targeted NP. In this case, the NP size, polymer 
content (PLGA, polylactic acid (PLA), and PLGA-PEG), polymer 
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molecular weight, surface ligand density, surface hydropholicity, and 
drug loading/release kinetics were combinatorially evaluated in terms 
of their impact on the NP pharmacokinetics in rats and tumor-bearing 
mice. 

Generally speaking, the search for an ‘optimal’ polymeric NP 
formulation has been conducted through two lines of investigation: 
experimentation and mathematical modeling. Experiments are crucial 
for the elucidation of the physiological mechanisms that impact poly
meric NP pharmacokinetics, such as NP-immune cell interactions. But 
the throughput of these experiments is necessarily limited by time and 
materials; an exhaustive, combinatorial experimental study of NP 
characteristics and their pharmacokinetic influence is bound to be 
limited in scope. In the above example from Hrkach [23], the physico
chemical characteristics of the docetaxel-loaded NPs were optimized 
based on in vitro drug release kinetics, not in vivo pharmacokinetics. 
Thus, due to the necessarily low throughput of in vivo studies, other 
strategies (such as extrapolating in vitro results to in vivo behaviors) are 
necessary to try to predict NP pharmacokinetics. On the other hand, 
mathematical modeling is relatively inexpensive in time and materials, 
and can theoretically evaluate the pharmacokinetic influence of each NP 
characteristic in a combinatorial manner. But given the spatiotemporal 
complexity of NP circulation in a complex organism, models are chal
lenged to reproduce often highly nonlinear phenomena that are not 
known or well understood. To this end, multiscale mathematical models 
of NP delivery consider the physical aspects of NP transport at all rele
vant biological scales (i.e. organism, organs, blood vessels, and cells) 
[24]. 

The promise of mathematical modeling in NP development is 
‘rational NP design,’ wherein mathematical and/or computational 
models are used to predict the NP characteristics that will optimize 
pharmacokinetics for a particular drug delivery application [25]. This 
form of optimization is valuable for improving the efficacy of the 
delivered therapy, and for optimizing NP formulations for regulatory 
and/or manufacturing purposes, both of which are crucial aspects of 
clinical translation [26]. A substantial obstacle to the realization of 
rational NP design is the need for experimental validation and uncer
tainty quantification of model results; in other words, once a model is 
created, how do we know it is correct? And if it is correct, how much can 
we trust that model’s predictions? Model accuracy is a function of the 
data used to parameterize the model as well as the certainty of that data, 
which is dependent upon the experimental methods. 

In this cross-sectional review, we discuss polymeric NP pharmaco
kinetics from both experimental and mathematical modeling perspec
tives. We evaluate the advantages and disadvantages of the 
methodologies used in each context by discussing the inherent uncer
tainty of experiments and relative quantitation of NP biodistribution, 
and the challenges associated with modeling NP delivery at multiple 
scales. Finally, we make the case that, especially for polymeric NPs, a 
combined experimental-computational approach has the potential to 
realize rational NP design through the creation of quantitative NP design 
frameworks. 

2. Polymeric NP biodistribution and pharmacokinetics 

Drug-loaded polymeric NPs, by virtue of their size and composition, 
show distinct differences from small molecule drugs in terms of their 
pharmacokinetics; water-soluble drugs are typically filtered at the renal 
glomerulus or secreted by the tubules and thus are continually removed 
from circulation [27]. Due to their size (~100nm diameter), polymeric 
NPs are rarely excreted in the urine [18]. Instead, NPs are degraded in 
the liver and/or excreted through the biliary stream [28]. While most 
non water-soluble drugs are metabolized in hepatocytes [29], the vast 
majority of NPs administered in one dose will be taken up by macro
phages and other phagocytic cells in organs such as the liver and spleen 
[18] and/or tumors [30,31]. Thus, systemic NP pharmacokinetics, bio
distribution and targeting are highly dependent upon NP-phagocyte 

interactions. 
There are two general experimental methodologies by which the 

pharmacokinetics and biodistribution of polymeric NPs are character
ized (Fig. 1): fluorescence quantification, which relies on a fluorescent 
dye that is loaded into the NP, usually during formulation [32], and 
activity quantification, which relies on the incorporation of a radioac
tive isotope in the NP formulation [33]. The primary advantage of using 
fluorescence to quantify NP uptake in different tissues is the ease with 
which fluorescent dyes are handled, incorporated into the NP core, and 
quantified. Fluorescence can be quantified with several methods, 
including fluorescence imaging using an in vivo imaging system (IVIS) or 
optical epifluorescence microscope, liquid-liquid extraction quantifica
tion (LLEQ), and flow cytometry of organ or blood cells [34,35] [36]. 

In LLEQ, the fluorescent dye encapsulated within polymeric NPs is 
extracted from homogenized organs using an organic solvent (e.g. 
chloroform or dimethylsulfoxide) to dissolve the polymer components, 
and then quantified based on standard curves drawn from known ti
trations of fluorescent NPs read using a plate reader. Although this NP 
quantification strategy is subject to biases introduced in the organ ho
mogenization process, LLEQ is considered more quantitative than IVIS 
imaging, as we describe in later sections [37]. It is currently unknown to 
what extent flow cytometry accurately quantifies NP uptake in different 
organs and/or cell types. Work from our laboratory has shown the utility 
of fluorescence microscopy in quantifying fluorescent NP concentration 
in blood [36], which provides a quantitative basis for studying NP 
pharmacokinetics based on the NPs’ fluorescence intensity alone. We 
have also employed quantitative fluorescence microscopy to estimate 
the endothelial cell coverage by targeted NPs in perfused human organs 
[13,14]. 

There are several methods by which organ and/or blood NP con
centration can be quantified without using NP fluorescence. Metallic (i. 
e. gold, nickel and cobalt) NP concentration can be readily quantified 
using inductively coupled plasma atomic emission spectroscopy (ICP- 
AES) or ICP mass spectroscopy (ICP-MS), after nitric acid digestion of 
cells and tissues [38], however this method does not apply to polymeric 
NPs. The most efficient methodology to trace polymeric NP bio
distribution and pharmacokinetics in vivo (without relying on fluores
cence intensity quantification) is to chelate a radioisotope to the NP 
surface [39,40] or incorporate the radioisotope into the polymer back
bone [41]. Since the high energy gamma rays emitted by the radioiso
tope can penetrate biological tissue with minimal attenuation and their 
signals are independent from the NPs’ environment, radioisotopes have 
been a great tool for quantification of NP accumulation in vivo. Positron 
emission tomography (PET), and single positron emission computed 
tomography (SPECT) have been used to image radioisotopes in vivo and 
ex vivo after animal sacrifice and organ retrieval. Gill et al. demonstrated 
the utility of radioisotope conjugation to the NP surface to develop a 
theranostic NP in which the 111In isotope conjugated to the NP surface 
serves as both an imaging contrast agent and a radiotherapy for 
esophageal cancer [39]. The challenge with this methodology for 
tracking NP pharmacokinetics and biodistribution is the crucial factor of 
polymeric NP degradation, such that a surface-conjugated radioisotope 
may separate from the NP and distribute differently than the NP core 
[42]. The kinetics of polymer degradation are likely to differ between NP 
formulations and polymer types. 

The role of NP physicochemical properties in NP pharmacokinetics 
has been the focus of numerous reviews [16–22]. NP size and compo
sition are the first variables to consider as they are directly related to NP 
formulation, whereas surface properties either emerge from NP formu
lation or are engineered after-the-fact. In general, NP size modulates 
pharmacokinetics and biodistribution; independent of material and 
surface charge, larger NPs (diameter > 100 nm) exhibit increased 
accumulation in the spleen and liver [43], while smaller NPs (diameter 
< 10 nm) exhibit clearance by the kidneys [18]. NP size also impacts 
targeting; NPs with diameter ~ 50 nm exhibit distinct increases in up
take by the mesangium of glomeruli, whereas larger ~100 nm diameter 
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NPs exhibit substantially less accumulation in renal corpuscles [44]. 
Work from our laboratory has shown that tuning PLGA NP size signifi
cantly impacts their biodistribution, wherein large NPs (diameter > 200 
nm) are mostly sequestered in the liver and spleen while small NPs 
(diameter ~ 120 nm) show greater uptake in lung and bone marrow 
[45]. The material properties of NPs substantially impact their phar
macokinetics; Ogawa et al. [46] showed that tuning the PEG isomer and 
PLA molecular weight directly impacted the NP stability in circulation 
and drug release kinetics. In an in vitro complement activation assay, 
D’Addio et al. [47] showed that polycaprolactone (PCL) NPs signifi
cantly activated the complement system for PCL with a molecular 
weight of 9 kDa, but not 5 kDa. 

Of all NP characteristics, surface properties are the most salient to 
their interaction with cells in the blood and tissues. Numerous strategies 
have been developed to alter NP surface properties [48]. Using a poly
dopamine coating, Liu et al. [9] developed NPs with surface mod
ifications—including bovine serum albumin (BSA) conjugation, 
PEGylation, and poly-L-lysine (PLL) surface coating—each of which had 
distinct pharmacokinetic and/or therapeutic effects. Zhou et al. [49] 
showed that functionalizing NPs with particular PEG structures (hier
archical, linear, and others) could selectively tune NP uptake in non- 
Kupffer liver cells. Our laboratory demonstrated that NP surface topo
graphical modification alters NP-cell interactions [50], pharmacoki
netics, and immunogenicity [35]. In the latter study, coated PLA NPs 
with hyperbranched polyglycerol (PG) and linear PG were used to 
demonstrate that the blood circulation time (augmented by NPs 
escaping the immune system) strongly depends on not only the surface 
density of the grafted polymer but also the structure of the grafted 
polymers. 

One of the most significant means by which NP surface modification 
impacts pharmacokinetics and biodistribution is by surface effects on 
protein corona formation [48]. The formation of a protein corona on the 
surface of NPs is a key step in the process of NP uptake by macrophages; 

corona formation can be altered by PEGylating the NP surface [51]. 
Bertrand et al. [41] showed that ApoE, a serum protein adsorbed to 
PLGA-PEG NPs in the mouse circulation, increases the circulation time 
of these NPs and can be modulated by PEG coverage. Cao et al. [52] 
estimated the protein-NP association constant KA for a series of 
increasingly PEGylated PLA NPs, and showed that the KA is negatively 
correlated with circulation time of the NPs and positively correlated 
with Kupffer cell uptake in the liver. 

Targeting moieties are another powerful surface modification for 
altering NP pharmacokinetics. Folic acid-conjugated NPs have been 
utilized to improve NP delivery to tumors [31,53] and the kidney [54]. 
To target proximal tubule cells in mice, Ordikhani et al. [55] conjugated 
Lambda light chains to the surface of PEGylated PLGA NPs. Antibodies 
have been conjugated to the surface of PLA-PEG NPs in our laboratory to 
more efficiently target endothelial cells in vitro and in ex vivo normo
thermically perfused human kidneys [14,15]. In these studies, EDC-NHS 
chemistry was used to conjugate the Fc portion of CD31 antibodies to the 
PLA-PEG NP surface. A second study from our laboratory used a 
monobody protein as an adapter between the NP and the antibody Fc 
portion, improving the orientation of the antibody and enhancing 
endothelial cell targeting significantly [13]. 

3. Physiologically based pharmacokinetics of polymeric NPs 

Physiologically based pharmacokinetics (PBPK) is a common math
ematical modeling approach utilized in predicting drug or NP pharma
cokinetics at the whole-body scale [56–58]. These methods have been 
used for decades to model and predict the pharmacokinetic behavior of 
chemotherapeutics and other drugs [59], but PBPK models of NPs are 
relatively new. In general, NP PBPK models represent physiological 
spaces (organs, tumors, blood, non-blood fluids) as compartments in 
which the NP concentration changes over time. Mathematically, the NP 
concentration in each compartment is modeled as an ordinary 

Fig. 1. Experimental methods of NP pharmacokinetics and biodistribution quantification. Semi-quantitative methods of fluorescence quantification (left) are used for 
measuring the biodistribution of fluorescent NPs while more quantitative methods of activity quantification (right) are used for measuring biodistribution of 
radioactive NPs. 
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differential equation that uses mass conservation to estimate NP uptake 
and output (Fig. 2A). NPs are distributed throughout the compartmental 
system with rate constants that describe NP transport between blood and 
organ compartments. For PBPK models where each organ is modeled 
with two sub-compartments (intravascular and extravascular), NP 
accumulation in the extravascular space is assumed to be limited by 
either NP delivery to the organ (‘blood flow-limited’) or by the NP in
teractions with the cells in the organ (‘membrane-limited’). These cases 
correspond to different systems of equations to describe NP accumula
tion; a blood flow-limited model assumes NPs reach equilibrium be
tween blood and tissue, instantaneously. Mathematically, this means 
that the concentration of drug in the extravascular and intravascular 
sub-compartments, denoted CE and CI, respectively, can be represented 
as: 

VI
dCI

dt
= QI(CP − CI) − N (1)  

VE
dCE

dt
= N − fCE  

where QI denotes the intravascular blood flow in the organ, CP denotes 
the plasma NP concentration, fCE denotes the clearance of NPs from the 
extravascular tissue, VI and VE denote the intravascular and extravas
cular volumes, respectively, and intra-organ NP flux is represented by a 
constant flux parameter, N [59]. Membrane-limited models assume that 
the absorption of NPs into the extravascular space is slower than the rate 
of NP delivery in the blood. NP concentration is assumed to not imme
diately reach equilibrium between organ sub-compartments: 

VI
dCI

dt
= QI(CP − CI) − PA

(
CI

K
− CE

)

(2)  

VE
dCE

dt
= PA

(
CI

K
− CE

)

− fCE  

where K is the equilibrium constant: 

K =

(
CI

CE

)

eq
(3) 

And PA is the permeability-area product. Membrane-limited models 
fit NP pharmacokinetic data substantially better than blood flow-limited 
models [7], indicating the (intuitively) important role of the cell mem
brane as a barrier to NP uptake. 

While membrane-limited models are helpful for predicting the bulk 
accumulation of NPs in different organ compartments, these models do 
not incorporate cell type-specific NP transport properties. In this case, 
we define cell NP transport as the binding and internalization of NPs at 
the cell membrane. Some cells are more likely to take up NPs than 
others; for example, in certain organs, macrophages and other phago
cytic cells act as a ‘sink’ that sequester NPs. But phagocytic cells are not 
always the intended target for NP-encapsulated drugs. Phagocyte- 
incorporated models use sub-compartments to describe NP transport 
between intravascular, tissue and phagocytic spaces within each organ 
(Fig. 2B). This model structure allows for the estimation of the degree to 
which NPs are taken up by phagocytes and, therefore, do not reach the 
other cells in the tissue. This model structure also increases the number 
of parameters required to predict intra-organ transport as well as inter- 
organ transport; in every organ, additional rate constants must be 
introduced to describe how the NPs are transported from the vascular 
lumen to the extravascular tissue and phagocytic compartments (ktiss- 

phago, kvasc-tiss, and kvasc-phago in Fig. 2B). In this case it is assumed that 
the phagocytes do not change their location within the body after taking 
up the NPs. Though it is established that macrophages will phagocytose 

Fig. 2. PBPK model structures. (A) Traditional PBPK model of NP circulation throughout the organ compartments of the body. (B) Phagocyte-incorporating models 
assume an intravascular, extravascular and phagocytic sub-compartment in each organ. As a result, there are more rate constants that describe the transport of NPs 
between compartments (denoted kvasc-tiss, kvasc-phago, ktiss-phago), and clearance from the organ by excretion (kexc) and phagocytic degradation (kdeg). Subscripts phago, 
tiss, and vasc denote phagocytic, tissue and vascular sub-compartments. C and V denote NP concentration and organ volume, respectively, with Qvasc denoting the 
blood flow through the organ. K is defined as in Eq. (3), to denote the ratio of intravascular and extravascular NP concentration. For the intents of this figure, it is 
assumed that the uptake of NPs into the extravascular space is a membrane-limited process whereas phagocytic uptake of NPs is assumed dependent on the 
intravascular and/or extravascular NP concentrations alone. 
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inorganic NPs and carry them to other parts of the body [60], this 
phenomenon has not been established in polymeric NPs. 

The set of NP transport rate constants (‘PBPK parameters’) are often 
dependent on NP characteristics [7,59], route of administration [61], 
and disease state [62]. One of the most straightforward forms of rational 
NP design involves the optimization of PBPK parameters through 
quantitative structure-activity relationships (QSAR) [61,63–65]. In 
general, QSAR is a methodology by which the structure of a drug (small 
molecule, biologic, nanocarrier, etc.) is quantitatively mapped to the 
drug’s pharmacokinetic and/or pharmacodynamic behavior. For phar
macokinetics, this is usually performed by constructing a statistical 
model that calculates the drug’s uptake in different organ compartments 
as a function of the drug’s chemical structure. In NP QSAR, pharmaco
kinetic and biodistribution data are used to statistically model the 
dependence of PBPK parameters on NP characteristics, which is often 
assumed to be linear. To accurately develop robust polymeric NP QSAR, 
experimental pharmacokinetics data pertaining to different polymeric 
NPs must be gathered and modeled using PBPK. 

A few studies have used PBPK modeling to analyze the pharmaco
kinetic properties of polymeric NPs. Generally, the NP characteristics 
tested in these studies include NP size, zeta potential and surface PEG 
content, which have differential effects on the NP uptake rates in each 
organ. Each NP characteristic does not uniformly correlate with 
particular pharmacokinetic properties. For example, the PEG/mPEG 
content is positively correlated with liver NP uptake for PLGA and 
polyacrylamide (PAA) NPs [7,66], negatively correlated with liver up
take for PCL NPs [67], and uncorrelated with liver uptake for PLA NPs 
[68]. When PEGylated, PAA shows a reduced accumulation in the lung 
[66], while PLGA shows an increased accumulation in the lung [68]. 
These differences suggest that the base, or core, polymer influences the 
relationship between surface PEG content and NP biodistribution. 

In PBPK studies by Li et al. [69], multiple polymeric NP formulations 
(PAA, PLGA, and PLA) were compared in terms of their rate of phago
cytic uptake ktiss-phago in a phagocytic PBPK model. PAA had the highest 
rate of phagocytic uptake (ktiss-phago ~ 10), while PLGA had the lowest 
rate of phagocytic uptake (ktiss-phago ~ 0.1). Even with PEGylation, the 
ktiss-phago of PAA was still ~100 times greater than that of PLGA. This 
indicates that the NP polymer backbone has its own effect on how NPs 
interact with phagocytes, and PEGylation of different polymer back
bones may meagerly tune that interaction. However, this theory cannot 
be corroborated without further experimental and PBPK modeling 
studies, as the PAA and PLGA NPs in the study by Li et al. were of 
different sizes: 31 nm diameter for PAA and 110 nm diameter for PLGA. 
NP size can also modulate NP-phagocyte interactions, thus comparing 
the NPs on the exclusive basis of their material composition may lead to 
erroneous conclusions. It is apparent that, when comparing the results of 
multiple polymeric NP PBPK studies, it is difficult to directly correlate a 
change in one NP characteristic to a change in that NP’s pharmacoki
netics, as there are too many confounding factors. Furthermore, syn
chronizing different measurement protocols, such as ICP-AES and 
fluorescence imaging, risks inaccuracy and/or uncertainty in the 
experimental data. Development of robust QSAR for predicting NP 
pharmacokinetics requires a significant volume of NP characterization 
and pharmacokinetic data, ideally gathered using standardized 
methods. 

One of the primary obstacles to the realization of rational design of 
polymeric NPs using PBPK models is the certainty of the experimental 
data used to estimate model parameters. A major source of uncertainty 
in translating pharmacokinetic data to PBPK model parameters is the 
inherent uncertainty of fluorescence intensity quantification in judging 
polymeric NP biodistribution [32]. Without alteration (addition of a 
heavy metal or radioactive tag [70,71]), polymeric NPs are not image
able by computed tomography (CT), single positron emission computed 
tomography (SPECT), or positron emission tomography (PET). There
fore, typical strategies for collecting polymeric NP pharmacokinetic 
and/or biodistribution data rely on loading these NPs with a fluorescent 

dye and comparing the fluorescence intensities of different organs after 
NP administration. 

LLEQ is the standard method for quantifying NP concentration in 
mouse organs but requires additional tissue dissolution and dye 
extraction steps that are experimentally involved. Additionally, plate 
readers used to measure fluorescence in the extracted dyes are also 
subject to error (e.g. due to liquid level inconsistencies). Ex vivo imaging, 
wherein multiple organs are removed from the animal and imaged at 
once, is a simple modality for comparing NP biodistribution across or
gans using fluorescence. However, this modality is prone to vastly 
overestimating NP concentration in small tissues such as tumors [37]. 
Fluorescence imaging is prone to saturation, such that the NP concen
tration in high-fluorescence organs (e.g. the liver) will be under
estimated. When comparing the fluorescence of an organ to that of the 
liver, that organ’s NP concentration may appear higher, because the 
liver signal has been saturated [37]. Due to fluorescent quenching, a 
higher concentration of hydrophobic fluorescent dye in the NPs can 
result in a reduction in their fluorescence [72]. Additionally, NP fluo
rescence can de-quench over time, increasing the NP fluorescence at a 
rate dependent on the (unknown) NP concentration in the tissue [73]. 
Lastly, the emission of different fluorescent dyes is sensitive to envi
ronmental conditions such as water content and pH of the tissue [32], 
further complicating the issue of quantitatively comparing the fluores
cence of organs that differ in their cellular homeostatic conditions. 

There have been several technologies proposed to solve the problems 
mentioned above, so that polymeric NP biodistribution can be quanti
fied without radiolabelling the NP surface. Bertrand et al. [41] incor
porated 14C into PLGA to create inherently radioactive (beta emitting) 
NPs. Li et al. [67] used an environmentally-responsive dye that 
quenches upon contact with water. This allowed them to estimate the 
biodistribution of only the intact NPs, essentially by using the fluores
cence quenching effect to their advantage [74]. This strategy is partic
ularly effective at reducing the fluorescence of dye released in the 
circulation as the NP polymeric shell degrades [42], a common source of 
noise in NP pharmacokinetic studies. Lastly, a novel method of quanti
fying polymeric NP uptake in tissues involves the use of matrix-assisted 
laser desorption/ionization; here, attachment of alkali metal ions to PEG 
dendrons and tandem mass spectrometry can quantify polymers based 
on their structures alone [75]. This method, though exciting, requires 
the development of specialized encoded polymers and thus may limit the 
properties of the resulting NPs. 

4. Multiscale mathematical modeling of in vivo NP delivery 

While PBPK models are excellent tools for interpreting NP pharma
cokinetic and biodistribution data in animal models, PBPK models 
cannot effectually recapitulate the complex, multiscale behaviors of NPs 
(Fig. 3). A PBPK model may inform us about how NPs accumulate in 
organs but cannot provide a mechanistic understanding of why NPs 
accumulate differently depending on their characteristics. Multiscale 
mathematical modeling of NP delivery considers NP transport at all 
relevant scales, from the systems scale (PBPK models) to the nanoscale 
(cell membrane-NP interaction models) [76–81]. Through multiscale 
modeling, the behavior of different NP formulations can be predicted 
from first principles, providing additional information and predictive 
capabilities. In this context, ‘first principles’ include the biophysics of NP 
behaviors at multiple scales; as opposed to PBPK modeling which gen
eralizes NP uptake to individual rate constants that do not necessarily 
reflect the physics of NP transport, multiscale modeling provides an in- 
depth view of NP transport by starting with physical principles. We re
view salient examples of NP modeling at multiple scales and discuss the 
challenges of implementing multiscale modeling approaches in rational 
NP design. 

At the nanoscale, NPs make contact with the cell membrane and are 
internalized in cells at different rates depending on the NP characteris
tics and the cell type. Fundamental models of NP-cell interactions use 
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systems of ordinary differential equations to describe changes in NP 
concentration across the cell membrane [82]. These models can be 
parameterized with data from in vitro microscopy studies of fluorescent 
NPs. Other salient issues in modeling NP-cell interactions are the impact 
of NP characteristics on their rate of internalization, and the impact of 
blood flow on NP binding. Modeling studies of NP adhesion and inter
nalization in cells under shear flow have incorporated a geometric 
component, such that NP size, shape, and surface ligand density affect 
the rate of adhesion of the NP to the cell surface [83,84]. In these 
models, the shear rate of blood flow at the vessel wall is incorporated 
into the calculation of the probability of adhesion to the vessel wall. 
Similarly, the dislodging of NPs is assumed to occur when the force of 
NP-cell adhesion (modeled as a flexible ligand-receptor connection) is 
less than the force exerted on the NP by the flow. These studies suggest 
that the blood flow at the wall and the rigidity of the NP surface ligands 
are more important than the affinity of those ligands for the cell surface; 
a lower compliance of the ligands resulted in significantly better bind
ing, while ligand affinity had less influence on NP adhesion. 

While our laboratory and others have shown the benefits of targeting 
endothelial cells with antibodies conjugated to the NP surface [13–15], 
non-protein ligands (e.g. ACUPA) have been used to selectively target 
cell receptors (i.e. PSMA on prostate cancer cells) [23]. The mathemat
ical models described above can be used to compute the optimal prop
erties of surface ligands for the improvement of cell internalization of 
NPs under flow, as opposed to solely relying on antibody affinity to 
determine the NP binding and internalization efficiency. 

The models mentioned previously are both useful and simplified; 
they do not consider the dynamics of multiple NPs as they make contact 
with the cell membrane, and the membrane itself is assumed flat and 
static, with a set number of receptors with which NP surface ligands can 
interact. Alternately, molecular dynamics models consider the dynamics 
of multiple NPs in three dimensions as they interact with each other and 
a dynamic cell membrane [85]. This form of modeling is routinely used 

to investigate antibody-membrane interactions [86], in which the 
binding affinity of antibodies to the cell surface ligand is quantified as 
Gibbs free energy [87]. In these simulations, it is possible to model 
mechanical and molecular factors of the cell membrane that may in
fluence NP adhesion, including the presence of a glycocalyx, membrane 
curvature, and the flexural rigidity of surface receptors [88]. For 
example, in the molecular dynamics study by Ramakrishnan et al. [89], 
it was shown that the flexibility of the cell membrane plays a crucial role 
in determining NP-cell interactions and adhesion. This result is directly 
applicable to the context of drug delivery, as cells may have altered 
membrane mechanical properties depending on their disease state [88]. 
These studies highlight the importance of characterizing physiological 
and pathophysiological aspects of drug delivery; even at the cellular 
scale, physiological processes, such as plasma membrane maintenance, 
structure, and activity are affected both by cell type and disease pro
cesses. These model results indicate the importance of such factors in 
NP-cell interactions, in addition to the NP characteristics themselves. 

At the scale of the lumen of a single blood vessel, NP transport is 
subject to both the fluid forces of blood flow as well as the Brownian 
motion characteristics of small particles in fluid (Fig. 4). Tan et al. [90] 
modeled NP concentration as a continuum, advected by blood flow, 
diffusing towards the vessel wall. At the site of the wall, a second model 
incorporated Brownian dynamics to simulate NP stochastic movement, 
and a ligand-binding model was used to simulate NP-cell adhesion. This 
‘model coupling’ is the main strategy by which multiscale models 
represent the very different physical effects associated with each length 
scale (diffusion, advection, Brownian motion, wall-binding). Vessel 
models can also incorporate the dynamics of flexible red blood cells 
(RBCs), which alter the flow and can impact NP margination towards the 
wall. Muller et al. [91] modeled RBC-NP interactions in cylindrical 
vessels under shear flow, and found that there is an optimal concen
tration of RBCs to disperse NPs towards the vessel wall; higher hemat
ocrit can lead to NPs collecting in the center due to fluid drag from the 

Fig. 3. Multiscale phenomena of NP transport in the body. NPs show distinct behaviors at each scale of the biological system under evaluation: whole-body, organ, 
blood vessels, and cells. The data required to effectively model these phenomena can be gathered using different methods including flow cytometry, fluorescence 
quantification, and atomic force microscopy, among others. 
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blood cells, while a lower hematocrit results in NPs marginating to the 
uninhabited vessel center. Thus, an intermediate hematocrit is optimal 
for NP dispersion towards the wall, a result replicated by Fullstone et al. 
[92]. Cooley et al. [93] used a vessel model of NP dispersion in a 
capillary to estimate the impact of NP size and shape on their dispersion 
towards the wall, and showed that a larger particle size and oblate shape 
produced the highest dispersion and contact with the wall. 

Intraluminal NP transport models such as those discussed above 
provide nuance to the fundamental issue of NP margination under flow; 
factors that influence NP-wall interaction frequency include hematocrit, 
vessel geometry, and NP size and shape, as these variables impact NP 
motion both far from and near the vessel wall. From a drug delivery 
standpoint, these results indicate that estimating NP delivery at the scale 
of vessel networks requires modeling schema that account for variance 
in these parameters across vessel segments. For example, the vessel 
segments of a glomerulus vary significantly in terms of their geometry, 
flow, shear rate, hematocrit, and filtration rate [94,95]. Individual 
vessel models provide an understanding of how these factors influence 
NP transport and may provide a means to estimate how NP transport 
varies across entire networks of blood vessels as a result of this 
heterogeneity. 

At the scale of blood vessel networks and organs, NPs are again 
modeled as a continuum advected by blood flow (Fig. 4). Using CT 
images of patient carotid arteries, Hossain et al. [96] modeled drug- 
encapsulated NP transport through the arterial lumen and into the ar
tery wall. After making contact with the wall, the NPs diffuse into the 
tissue composed of adventitia and intima. Particulate diffusion models 
have been used to estimate NP penetration into various tissues [97] and 
can serve as a coupled model in the greater arterial network modeling 
scheme to estimate drug delivery to atherosclerotic plaques [96]. A 
similar scheme was utilized by Sohrabi et al. to study the transport dy
namics of NPs in patient-specific pulmonary arterial networks [24,98]. 
In this case, the NPs were modeled as rigid particles with both Brownian 
and fluidic motion, and a binding probability function was used to es
timate the stochastic nature of NP-wall adhesion. Li et al. [99] developed 
a multiscale computational model of NP transport in patient-specific 
arterial networks which included RBC-NP interactions, NP-wall in
teractions, and a model of endosomal rupture of the NPs inside the target 

cell. These studies clearly show the utility of model coupling in repre
senting NP transport at multiple scales and the ‘personalization’ of these 
models by incorporating patient-specific anatomical features. 

Another salient form of modeling NP transport at the organ scale 
involves modeling NP transport through tumor tissues [81]. Frieboes 
et al. [100] modeled anti-angiogenic drug-encapsulating NP transport 
through a dynamic tumor model with blood vessels that changed in 
density and location over time. These studies indicated that the vascu
larity of the tumor plays a crucial role in NP transport, and that in the 
event of low tumor vascularity, NPs will preferentially flow into healthy 
vessels that will bypass the tumor. This effect plays an important role for 
anti-angiogenic drugs, in which the therapy itself reduces the vascularity 
of the tumor and thus the transport of drug-encapsulated NPs [101]. 
Further studies from this group investigated the effects of alterations in 
NP characteristics on NP transport in cancer tissue, showing that NP 
diameter and avidity as well as drug potency can be effectively opti
mized for reducing tumor diameter [102,103]. Goodman et al. [104] 
used a mathematical model of fluorescent NP penetration into cancer 
spheroids, and showed that adding collagenase to the spheroid media 
increased the porosity of the spheroid and increased NP penetration 
depth. 

The value of multiscale modeling of NP transport in the body is the 
ability to model many physical phenomena simultaneously, which may 
result in the discovery of unexpected behaviors that a PBPK model will 
not capture. PBPK models can recapitulate the gross behaviors of NPs in 
terms of their distribution to different organs and tissues but cannot 
show how a NP interacts with different cell types in a tissue, or how the 
NP is transported in capillary networks. As a result, there are NP for
mulations that appear to target tissues effectively according to PBPK 
models, but do not reach the target cells within the organs due to some 
physical effect not captured by PBPK models. By developing a fully 
multiscale framework, the characteristics of the NP and the biological 
milieu can be modeled and used to optimize the NP formulation for a 
particular drug delivery application. 

Multiscale models of NP delivery face substantial challenges in their 
ability to predict NP behavior. First, multiscale modeling is naturally 
hindered by computational cost; modeling NP transport at all scales 
simultaneously requires prohibitively expensive computational 

Fig. 4. NP transport in vascular systems is typically modeled as a continuum that distributes throughout the vascular anatomy (left). Intraluminally, NPs interact 
with phagocytes and red blood cells before marginating to the wall and binding to the endothelial cells (right). Typical models of NP-cell interaction model the force 
balance between the NP’s binding to the cell surface and the hemodynamic force that drives the NP away from the wall. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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resources and time to perform these costly simulations. Instead, multi
scale models of NP transport typically couple multiple models together; 
each scale (whole body, organs, vessels, cells) are modeled separately, 
and these models are interfaced to predict how cell-scale NP transport 
properties impact NP transport at the scale of organs and organ systems 
[99]. The challenge with this modeling strategy is the potential for 
compounding error; as one model’s output becomes the input for 
another model of the next relevant scale, the inaccuracy of the first 
model is passed on to the second, with the potential to drastically alter 
the end result [105]. Several computational approaches have been used 
to control the error between models at different scales; for example, 
Prudhomme et al. used an adaptive method of coupling atomistic and 
continuum models wherein the error is minimized through the coupling 
scheme [106]. 

To reduce the risk of compounding error between sub-models, pre
vious multiscale modeling studies parameterized and validated each 
sub-model with separate experimental datasets. Liu et al. [107] devel
oped a model of an ICAM-1 antibody-conjugated NP interacting with an 
endothelial cell membrane using atomic force microscopy (AFM) data. 
AFM has been used extensively to quantify the strength of NP-membrane 
binding with different NP surface functionalization (e.g. antibody 
conjugation) [108–114]. Interestingly, Liu et al. found that, for securing 
NPs to the cell membrane, the affinity of the NP surface antibody for 
ICAM-1 played a less important role than multivalency wherein multiple 
antibody-antigen connections immobilized the NP and improved its 
adhesion to the cell. At the vessel scale, Van de Ven et al. [115] used 
intravital microscopy of mouse tumors to parameterize the previously- 
discussed model of NP transport in vascularized tumor tissue [100]. 
Thus, there are several experimental modalities that will provide data 
appropriate for parameterizing individual sub-models in a multiscale 
modeling schema. 

Another crucial challenge—in the effort to model NP delivery at 
multiple scales—is the challenge of model validation. Ultimately, the 
proving ground for a NP formulation is an in vivo model, wherein the NPs 
will traverse all relevant scales in their path to their target(s). A key 
advantage of in vivo models is their accurate representation of anatomy 
and physiology, both of which play an important role in NP transport. 
However, small animal models are known to differ in their anatomy and 
physiology from humans; compared to humans, mice and rats have 
higher heart rates, smaller blood volume, and smaller organs, all of 
which impact NP pharmacokinetics [116]. Even at the microvascular 
level, humans show distinct differences from mice and rats; unlike ro
dent glomeruli, human glomeruli have non-filtering ‘chambers’ in 
addition to the usual filtering capillaries, which is hypothesized to 
differentiate human glomerular hydrodynamics from that of mice and 
rats [117]. Large animal models (e.g. pigs, sheep, non-human primates) 
are much more expensive than small animals and fail to capture the 
substantial anatomical variability of the human population. Disease 
animal models can introduce additional discrepancies. To address this 
problem, we have used ex vivo normothermic machine-perfused human 
organs to evaluate the targeting efficacy of antibody-conjugated PLA- 
PEG NPs [13–15,36]. Though difficult to execute, this experimental 
setup is ideal for characterizing the transport of NPs in human organs 
and has the potential to aid in the development of increasingly sophis
ticated models of NP transport. To experimentally model NP transport at 
the vessel scale, we have used isolated perfused human umbilical veins 
[118] and microfluidic systems [13], both of which are useful in the 
characterization of NP dispersion and cell interactions under flow. 

5. The future of NP pharmacokinetic optimization 

The lofty goal of rational polymeric NP design presents two funda
mental challenges to mathematical models: (1) the human physiological 
processes relevant to NP pharmacokinetics—such as the dynamics of the 
cardiovascular and immune systems—are difficult to recapitulate in 
computational models; and (2) the multiscale behaviors of NPs are 

difficult to quantitatively map to particular NP characteristics due to 
experimental uncertainty. Experimental uncertainty in NP pharmaco
kinetics studies is due to the methodologies themselves (i.e. NP fluo
rescence intensity quantification), as well as the time and resource 
challenges that make it difficult to produce the high-throughput NP 
pharmacokinetic data needed to effectively validate NP transport 
models. Meta-analysis models that integrate multiple datasets into one 
modeling framework present the opportunity to parameterize models 
based on comprehensive, multicenter datasets and not individual, siloed 
datasets. Cheng et al. [63] integrated 200 NP pharmacokinetic datasets, 
spanning myriad NP types and surface properties, to model each case 
with the same PBPK model. By parameterizing the model with these 
different datasets, it was possible to compare pharmacokinetic param
eters between groups of NPs with different characteristics, the crucial 
first step towards rational NP design. Although this effort did not take 
the next step to develop QSAR between NP characteristics and their 
pharmacokinetics, the integration of multiple datasets could theoreti
cally reduce the uncertainty of the model results. In future studies, 
rigorous validation will be required to determine if the error generated 
by a single dataset is reduced as more datasets are incorporated. 

Another mathematical modeling technique uses Bayesian statistics to 
incorporate experimental uncertainty into the model construction. 
Practically, this approach involves parameterizing and validating the 
model based on experimental data represented by a distribution with 
mean and standard deviations (how experimental data is presented) as 
opposed to a single number. Thus, model accuracy is quantifiable as a 
function of the error in the data used to parameterize and/or validate the 
model. Chou et al. [61] used a Bayesian PBPK modeling framework to 
integrate multiple pharmacokinetic datasets corresponding to 
differently-sized gold NPs administered orally, intravenously, intra
tracheally, and endotracheally. This study showed that the administra
tion route played a greater role in determining biodistribution patterns 
than the NP characteristics. Due to the Bayesian nature of the modeling 
framework, parameters and model results were represented as proba
bility distributions. Practically, this means that it is readily apparent 
how well the model fits the data, and how confident we can be that the 
model results reflect reality and are not based solely on potentially 
erroneous datapoints. Furthermore, by representing model outputs as 
probability distributions, a Bayesian model shows how confident we can 
be in a particular model result. 

The other crucial benefit to a Bayesian modeling framework is that 
more data can be incorporated into the framework over time; an initial 
dataset can be used to construct the parameter distributions that predict 
NP pharmacokinetics based on their general properties (such as mate
rial, charge, size, surface PEG content), then additional, specialized data 
can be incorporated to specify the NP characteristics for a particular 
disease state or target cell type. This approach could be useful for 
generating hypotheses to test experimentally, to better predict the effect 
of a specific NP characteristic on its pharmacokinetic behavior; further, 
this feature could be applied to incorporate human anatomical and/or 
physiological variability into the modeling pipeline. 

From multiscale modeling, it is apparent that physiology and the 
target microenvironment play a role of equal importance to NP char
acteristics in determining NP behavior in the body. Sykes et al. [11] used 
mouse tumor models of varied size to show that tumor characteristics 
(size, vascularity, cell type) directly impact NP delivery. Dos Reis et al. 
[119] showed that the age of the animal impacts NP delivery. From a 
pathophysiological standpoint, changes in liver, spleen and/or kidney 
function due to disease will naturally affect NP clearance and circula
tion. These factors motivate the potential need for ‘personalized nano
medicine,’ wherein NPs are designed on the basis of the anatomy and 
physiology of individual patients. Taken to the extreme, Lazarovits et al. 
[120] developed patient-derived protein-based NPs for patient-specific 
drug delivery. 

Polymeric NPs themselves show variability in their properties 
depending on their formulation protocol. Depending on the method 
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used (nanoprecipitation, single or double emulsion and solvent evapo
ration, etc.) the material and formulation parameters (polymer compo
sition, molecular weight, agitation speed, temperature) can influence 
the NP size, zeta potential and surface characteristics [121]. Quality by 
Design (QbD) is a methodology frequently employed in drug develop
ment, involving the optimization of chemical synthesis by screening 
different factors that may alter the chemical’s properties. In the case of 
NPs, QbD has recently been used to screen for the material/formulation 
protocol parameters that may influence the NP’s properties, and then 
optimize those parameters to produce precisely-tuned NPs [122]. This 
methodology also involves design of experiments (DoE), a statistical 
methodology whereby the optimal amount of information is gleaned 
from the minimal amount of experiments. Although the QbD process is 
similar to QSAR, QbD is more focused on the quality and reproducibility 
of NP formulation. Thus, the combination of QbD and QSAR will ulti
mately allow for a comprehensive predictive pipeline to design the 
production of NPs that have the desired pharmacokinetic profile for a 
particular drug delivery application. QbD can be incorporated into a 
Bayesian framework as well, such that the ultimate model pharmaco
kinetic prediction is based on the NP formulation parameters and not 
just the NP characteristics alone. 

There is a wealth of data describing the pharmacokinetics of NPs that 
can be mined to optimize NP formulations for particular applications. 
However, the true challenge in NP design optimization is determining 
how to integrate these data to make valid predictions [123]. To robustly 
predict the optimal NP formulation, it appears necessary to combine 
multiple datasets that examine different NP characteristics and their 
influence on NP pharmacokinetics [63]. In this case, a robust prediction 
has both: (1) low uncertainty and (2) accounting of the multiscale nature 
of NP behavior. 

A helpful conceptual tool for visualizing NP formulation optimiza
tion is a quantitative NP design framework (Fig. 5). In this example, raw 
materials are converted to NPs through formulation techniques that can 

be optimized using QbD to create NPs with reproducible physicochem
ical characteristics. These NPs are tested in experimental settings, and 
the results of these experiments are used to either parameterize a mul
tiscale model of NP delivery or validate its results. The set of model 
parameters that emerges from the parameterization of the model based 
on experimental data (Fig. 5, arrow in green) describe NP behavior at 
multiple scales and can be quantitatively mapped to the NP character
istics using statistical models (QSAR). Finally, for a particular drug de
livery application, the multiscale model can be used to estimate which 
model parameters will optimize NP targeting efficiency. Through QSAR 
and QbD, those model parameters are mapped back to a plan for NP 
formulation. The multiscale model developed through the framework 
can also simulate how a particular NP type will behave in the body at all 
relevant scales, which is useful for reducing costly NP pharmacokinetics 
experiments. 

Another advantage to NP design frameworks is that they define a set 
of standardized data analysis, models and parameterization schema that 
ensure that all NP characteristics can be accurately compared. This is 
useful because results of individual experimental studies are difficult to 
compare; as stated earlier, the influence of one NP characteristic on its 
pharmacokinetics is difficult to judge due to the confounding factors of 
other NP characteristics, and it is unlikely that two studies will have the 
exact same NPs that differ in only one characteristic. Modeling studies 
are difficult to compare if the model structures are different. In the 
quantitative NP design framework described in Fig. 5, different data are 
incorporated into the parameterization of one standard (potentially 
multiscale) model. In the end, the raw data pertaining to a study of one 
NP formulation may not be comparable to the raw data of that of 
another formulation, but the two formulations can be compared in terms 
of their model parameters that are standardized across all experimental 
cases included in the design framework. 

This viewpoint has some basis: quantitative NP design frameworks 
have been explored for non-polymeric NP systems. Dogra et al. [64] 

Fig. 5. A generalized quantitative NP design framework. Raw materials are combined to formulate a NP, which is used in experiments that characterize that NP’s 
behavior at multiple scales. A parameterizations schema (green) is used to convert that experimental data into parameters for a multiscale model of NP transport 
(blue). That model can then either produce simulations of how a given NP formulation will behave in the body or be used to optimize the NP formulation for a 
particular drug delivery application (red). QSAR and QbD are used to map NP characteristics to model parameters and NP formulation parameters to the NP 
characteristics, respectively. Uncertainty in experimental data (purple), propagates to model assumptions and can introduce error or uncertainty into model results. 
Validation of the model using experimental data helps to reduce model uncertainty. 
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developed a multiscale PBPK model of silica NP delivery to rat tumors. 
This model was parameterized with data from silica NPs of varied size 
(45 nm to 160 nm in diameter) and was extensive in its representation of 
physiological processes at multiple scales; an overall PBPK model was 
used to model NP transport between organs, and organs had intravas
cular, extravascular and phagocytic sub-compartments (as in Fig. 2B). 
Within each sub-compartment, a separate set of equations described the 
micron-scale NP dynamics involving vessel margination and wall 
adhesion (intravascular sub-compartment), as well as cell-scale phe
nomena such as NP internalization and phagocytosis (phagocytic sub- 
compartment). The data used to generate the overarching PBPK model 
were gathered in a former study using SPECT/CT images of indium- 
labelled mesoporous silica NP biodistribution in rats [124]. This com
bination of NP imaging with mathematical modeling of NP pharmaco
kinetics creates a quantitative NP design framework; NPs with varied 
characteristics go through a pipeline of experiments, parameterization, 
and model construction, to ultimately predict how they will vary in their 
biodistribution based on their characteristics. This imaging-modeling 
pipeline is reviewed by Dogra et al. in detail elsewhere [125]. 

These studies showed how a quantitative NP design framework can 
be constructed, with imaging data used to parameterize a PBPK model of 
NP transport. With parametric sensitivity analyses, they showed that 
multiple pharmacokinetic parameters are sensitive to NP characteristic 
manipulation; the NP radius, density and degradation rate had signifi
cant impact on tumor accumulation and excretion, for example. How
ever, they did not take the additional step of optimizing the NP 
formulation to target tumor tissue. The Bayesian PBPK model frame
work developed by Chou et al. [61] is another example of the basic 
structure of a quantitative NP design framework, in that gold NPs with 
different characteristics were modeled by parameterizing a PBPK model 
with pharmacokinetics data from rats. The mathematical model is also 
Bayesian, such that additional data can be incorporated over time. To 
our knowledge, this platform has not yet been implemented to optimize 
NPs for a particular drug delivery application. 

The modeling studies above highlight the interest in modeling NP 
pharmacokinetics as a function of the NP characteristics, but such a 
strategy has not been employed to comprehensively model polymeric 
NP pharmacokinetics. At the most basic level, polymeric NPs usually 
have lower density and higher polydispersity than inorganic NPs. Both 
of these factors influence experimental results as well as modeling 
schema. For example, modeling NPs with a distribution of sizes may 
require Monte-Carlo and/or Bayesian methods to account for the dif
ferences in NP behavior associated with that polydispersity. The future 
of polymeric NP optimization will rely on the development of appro
priate mathematical models that can be used to integrate many poly
meric NP pharmacokinetic datasets. 

6. Conclusion 

Polymeric NPs present the opportunity to create a wide array of 
nanocarriers with different combinations of physicochemical attributes. 
Rational NP design is a strategy by which mathematical models are used 
to optimize these characteristics for specific drug delivery applications. 
The optimal modeling approach for realizing rational NP design must 
allow for the integration of many different experimental datasets to fully 
map the design space of polymeric NPs. Studies that use individual 
datasets provide distinct insights into how a particular NP characteristic 
influences its pharmacokinetics [7], but it is difficult to extrapolate these 
results to NPs with different core materials, surface alterations, and size. 
Here, we present the concept of a quantitative NP design framework, 
which could provide a pipeline for many pharmacokinetic datasets to be 
incorporated into one model via parameterization of the model or vali
dation of the model’s results. By using a standardized model, it should be 
possible to combine this data to generate more robust predictions. 

To integrate multiple NP pharmacokinetics datasets into one model, 
it is essential to understand that there are diverse methodologies for 

measuring NP uptake in organs and cells, each with their advantages and 
disadvantages. In particular, fluorescence intensity quantification is 
prone to several errors and uncertainties that will propagate to the 
model results [32]. Fluorescence is relative and fluorescence saturation, 
quenching and de-quenching are bound to affect model results [37]. 
Nuclear imaging modalities may be useful for validating fluorescence 
quantification data before they are used to parameterize or validate the 
mathematical model. Multiscale modeling of NP delivery presents the 
opportunity to predict complex or nonlinear NP pharmacokinetic 
behavior, thus multiscale models are preferable to PBPK models alone. 
Multiscale modeling also provides the opportunity to incorporate more 
mechanistic, experimental data of NP-cell interactions obtained by AFM, 
flow cytometry, and quantitative microscopy. A key challenge in mul
tiscale modeling is validation of the model. We believe that ex vivo 
human organ perfusion provides a unique, controlled experimental 
system to test particular hypotheses generated by a multiscale model of 
NP delivery in human organs [14,126]. 

Taking a broad view of the field of nanomaterial-based drug delivery, 
there has been an emphasis on obtaining a ‘magic bullet:’ a modality 
that directs the vast majority of drug to a single cell type, tissue, or 
anatomical niche [123]. In reality, the ‘magic bullet’ for any tissue type 
has yet to be discovered; current NP-based drug delivery methods, 
though they may improve targeting of the loaded drug, still produce 
modest gains in the face of off-target accumulation [127]. This sobering 
point shows that there are great strides to be made in the field of 
nanomedicine. Notably, this also indicates that the methodologies we 
have used – involving siloed experiments and modeling studies to 
empirically predict which NPs will be optimal for a particular drug de
livery application – are not adequate to produce generalizable results. 
Instead, we posit that large volumes of data must be integrated to 
adequately cover the polymeric NP design space, and that one standard 
mathematical model must be used to compare NP formulations to ulti
mately decide the optimal formulation for a particular drug delivery 
application. 
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