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Despite rapid advances in cancer research during the past 
decades, glioblastoma (GBM) remains the most aggressive 
brain tumour in adults1–3, with a rate of 15,000 deaths every 

year in the United States alone, and a 5-year survival rate of less than 
10%. While TMZ increases the survival rate of GBM patients by 
methylating DNA and inducing toxicity in tumour cells, its thera-
peutic benefits are limited by resistance, which arises via numerous 
mechanisms, including the acquisition of mismatch repair defects 
and re-expression of O6-methylguanine-DNA-methytransferase 
(MGMT)4–8. Anticancer agents with alternative mechanisms of 
action are needed to treat TMZ-resistant GBM patients.

Platinum-based compounds—such as the third-generation 
platinum anticancer drug oxaliplatin and a cationic plati-
num DNA intercalator (5,6-dimethyl-1,10-phenanthroline) 
(1S,2S-diaminocyclohexane) platinum(ii)] (56MESS)—have been 
shown to possess potent anticancer properties with negligible 
cross-resistance to DNA-alkylating agents9,10. Unlike TMZ, oxali-
platin forms interstrand and intrastrand crosslinks with DNA that 
cannot be reversed by MGMT, and also is active in the setting of 
defects11,12. Oxaliplatin also induces ribosome biogenesis stress and 
leads to cell death in a p53-dependent manner13,14. By contrast, 
56MESS intercalates DNA, disrupts intracellular iron and copper  

metabolism, suppresses the biosynthesis of sulfur-containing 
amino acids, and inhibits tumour cell proliferation10,15,16. Despite 
their remarkable antitumour efficacy, the therapeutic applications 
of oxaliplatin and 56MESS are hindered by toxicity15,17. Here we 
propose to address this problem by encapsulating these agents in 
reduction-responsive nanoparticles (NPs)15,16,18–20, an approach 
widely used for the delivery of chemotherapeutics21.

As an emerging class of nanocarriers, reduction-responsive poly-
mers possess great potential for tumour-specific delivery of bioactive 
molecules22–26. Reduction-responsive polymers usually incorporate 
disulfide bonds that are sufficiently stable in the extracellular space, 
but are rapidly cleaved in the reductive tumour environment23,27. 
The glutathione (GSH) concentration in tumour tissue is fourfold 
higher than in non-neoplastic tissue27. Moreover, TMZ-resistant gli-
oma cell lines show even higher levels of GSH than TMZ-sensitive 
cell lines28. Such differences make reduction-responsive NPs espe-
cially attractive for GBM chemotherapy28.

The blood–brain barrier, which is impermeable to most 
drugs29–31, is another obstacle for GBM therapy. Recent clini-
cal trials have shown that convection-enhanced delivery (CED) 
safely bypasses the blood–brain barrier and directly delivers drugs 
to target brain regions32. Using CED, the drugs can diffuse to a 
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wider region compared with bolus injection or implants, where 
the diffusion is driven solely by the concentration gradient33,34. 
Combining the advantages of these technologies, we demonstrate 

here that CED of reduction-responsive NPs containing highly 
potent platinum agents serves as a promising therapeutic strategy 
for TMZ-resistant GBM.
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Fig. 1 | Synthesis of the reduction-responsive polymer and formation of NPs. a, Synthesis of poly (CHTA-co-HD)-PEG. b, Structures of OxaPt(iv) 
and 56MESS. c,d, Formation of NPs by nanoprecipitation. c, Formation of NP-OxaPt(iv). d, Preparation of NP-56MESS. e, A schematic illustrating that 
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Polymer synthesis and NP formulation
To encapsulate the oxaliplatin prodrug OxaPt(iv) and 56MESS, 
we synthesized and characterized a reduction-responsive polymer,  
poly(1,2,4,5-cyclohexanetetracarboxylic dianhydride-co-hydroxy- 
ethyl disulfide)-polyethylene glycol (poly(CHTA-co-HD)-PEG), 
which contains disulfide bonds and pendent pairwise carboxylic 
acids (Fig. 1a and Supplementary Figs. 1–4). With nanoprecipita-
tion, this polymer forms: (1) spherical NPs encapsulating OxaPt(iv) 
through hydrophobic interaction (Fig. 1c) and (2) NPs incorporat-
ing positively charged 56MESS through electrostatic complexation 
(Fig. 1d and Supplementary Fig. 5). The resulting NPs inhibit the 
growth of TMZ-resistant GBM cells through the mechanisms illus-
trated in Fig. 1e.

Characterization of the NPs
The critical micelle concentration of a polymer is a good predic-
tor of NP stability35,36. The critical micelle concentration for our 
polymer was measured at 0.018 mg ml−1 using the Nile red assay  
(Fig. 2a,b), which predicts a slow dissociation rate37. The size and 
surface charge of NPs influence intracellular uptake38–41. The hydro-
dynamic diameter of OxaPt(iv)-loaded NPs (NP-OxaPt(iv)) in arti-
ficial cerebrospinal fluid (aCSF) was measured to be 105 ± 15 nm, 
and that of 56MESS-loaded NPs (NP-56MESS) was 105 ± 2.5 nm 
(Fig. 2c and Supplementary Fig. 5); the polydispersity indexes 
(PDIs) for the NPs were 0.19 and 0.15, respectively (Fig. 2d); both 
NP types were negatively charged, with zeta-potentials of −26 mV 

and −22 mV, respectively (Fig. 2e); these parameters were within the 
range of optimal internalization identified previously38–40. In addi-
tion, we observed that the encapsulation efficiency of OxaPt(iv) 
(36.2%) was lower than that of 56MESS (63.4%) (Fig. 2f).

To test whether our polymer was reduction-sensitive, we 
designed a thiol–disulfide exchange reaction using thioglycolic acid 
and found that disulfide bonds broke quickly in the presence of a 
reducing agent (Fig. 2g,h). The consumption rate of thioglycolic 
acid is displayed in Fig. 2i. It has been reported that the GSH con-
centration is 2–20 µM in extracellular space42,43 and 0.1–10 mM in 
the cytosol42,44,45. To evaluate the reductive responsiveness of NPs in 
the cell, we performed a Nile red assay46, revealing complete dissolu-
tion of NPs in 5 mM GSH solution within 3 d (Fig. 2j).

Research has shown that the GSH concentration in tumour tis-
sue is fourfold higher than in normal tissue27 and that TMZ-resistant 
glioma cell lines possess higher levels of GSH than TMZ-sensitive 
cell lines28. To investigate the triggered release of platinum drugs, 
we incubated the NPs in aCSF and GSH–aCSF solutions with dif-
ferent GSH concentrations—0.5 mM, 5 mM and 20 mM—and 
observed that approximately 83% of platinum was released from 
the NP-OxaPt(iv) with continuous incubation in 5 mM GSH solu-
tion over 3 d, whereas only 11.3% OxaPt(iv) was released during 
incubation in aCSF over the same time period (Fig. 2k). Similarly, 
approximately 72% of platinum was released from NP-56MESS  
in 5 mM GSH solution, whereas only 9.1% was released in aCSF 
(Fig. 2l). Both types of NPs dissociated faster in 20 mM GSH  
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solution and more slowly in 0.5 mM GSH solution. These data sug-
gest that NPs are responsive to reductive conditions.

To evaluate intracellular uptake of NPs, we formulated NPs 
loaded with a fluorescent tracer, Dil (NP-Dil). NP-Dil physical 

characteristics were similar to NP-OxaPt(iv) and NP-56MESS 
(hydrodynamic diameter 90 ± 2 nm, PDI 0.13 and zeta potential 
−22.7 mV) (Fig. 3b–d). Two human GBM cell lines, TMZ-resistant 
LN229 (LN229-TR) and cells from a patient-derived xenograft 
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(PDX), were incubated with NP-DiI. The fluorescence intensity 
in both cell lines increased markedly within the first a few hours. 
This suggests that NPs could be taken up rapidly by GBM cells  
(Fig. 3e–g); which we also visualized using confocal microscopy 
(Fig. 3h and Supplementary Fig. 7). Notably, the majority of endo-
cytosed NPs were outside of endosomes (Fig. 3i–m).

Antitumour efficacy of NPs in vitro
To test the anticancer activities of OxaPt(iv) and 56MESS, we per-
formed growth-delay assays using human GBM cell lines includ-
ing TMZ-sensitive LN229 (LN229-TS), TMZ-resistant LN229 
(LN229-TR), PDX and U87 (Fig. 4b–e). The half-inhibitory con-
centration (IC50) of TMZ in LN229-TS was 2.0 µM (Fig. 4b), whereas 
the IC50 of TMZ in LN229-TR was 162.6 µM (Fig. 4c), confirm-
ing an approximately 81-fold resistance to TMZ in the LN229-TR 
cell line. Both OxaPt(iv) and 56MESS showed higher potencies 
than TMZ in all cell lines tested, especially in TMZ-resistant cells 
(Table 1). After loading into NPs, the IC50 of both drugs decreased 
in most cell lines, except in the LN229-TS cell line, where the IC50 
values were similar for both free drugs and their NP-loaded forms.  
(Fig. 4f–i and Table 1).

Antitumour efficacy of NPs in an animal model
In previous studies, platinum-based drugs have typically been 
administered intraperitoneally in doses ranging from 5 mg kg−1 to 
60 mg kg−1 to achieve a therapeutic effect47–49. To compare the safety 
profiles of CED versus intraperitoneal injection of platinum-based 
drugs, we performed whole blood cell counts (Fig. 5a–c) and  

examined tissue histology after drug administration (Supplementary 
Figs. 8 and 9). We found that at therapeutic doses, CED was 
safer than intraperitoneal injection: intraperitoneal injection of 
drug-loaded NPs reduced the number of white blood cells, platelets 
and red blood cells. By contrast, the white blood cell, platelets, and 
red blood cell counts of the CED-treated groups were within the 
normal ranges (Fig. 5a–c). Furthermore, no toxicity was detected 
in the organs from mice treated with CED, whereas intraperitoneal 
injection of the NPs caused splenic abnormalities (Supplementary 
Figs. 8 and 9) such as cells with brown–black pigment in the 
spleen. This pigment could be the result of macrophage engulf-
ment of effete or damaged red blood cells during drug-induced  
haemolytic anaemia50–54.
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Table 1 | IC50 velues (in μM) of TMZ, OxaPt(iv) and 56MESS in 
different cell lines

Drug LN229-TS LN229-TR U87 PDX

TMZ 2.0 162.6 39.9 189.6

OxaPt(iv) 0.7 (2.9) 0.6 (271) 0.2 (199.5) 0.3 (632)

56MESS 1.1 (1.8) 0.5 (325.2) 1.1 (36.3) 1.7 (111.5)

NP-OxaPt(iv) 1.0 (2.0) 0.2 (813) 0.1 (399) 0.2 (948)

NP-56MESS 0.6 (3.3) 0.2 (813) 0.7 (57) 0.7 (270.9)

The numbers within parentheses represent the ratios of the IC50 values of TMZ to those of  
each drug.
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To test the antitumour efficacy of the NPs in vivo, we first estab-
lished an animal model by transducing LN229-TR cells with lentivi-
rus to express luciferase (LN229-TR-LUC, Supplementary Fig. 10a) 
and implanting these cells into mice. Two weeks after the implan-
tation, we investigated luciferin kinetics using an in vivo imaging 
system (IVIS) and found that the bioluminescent signal from the 
tumours peaked approximately 17 min after injection of luciferin 

(Supplementary Fig. 10b,c). We next tested the antitumour efficacy 
of our NP formulations in mice bearing LN229-TR-LUC tumours. 
We observed that the TMZ-treated mice died around day 27, which 
was not significantly different to the survival of mice in the PBS 
group (around 23 d). Conversely, NP-OxaPt substantially inhib-
ited tumour growth and tripled the survival time of mice bearing 
LN229-TR-LUC tumours. Most notably, 80% of NP-56MESS-treated 
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mice were long-term survivors (surviving for more than 102 d)  
(Fig. 5d–i). In addition, we characterized the in vivo biodistribution 
of NP-56MESS-FITC and observed that NP-56MESS-FITC covered 
the area labelled by U87 cells expressing red fluorescent protein 
(U87-RFP) (Supplementary Fig. 11a–d), suggesting that NPs pen-
etrated the tumours.

Mechanisms of action examined by RNA-seq analysis
To understand the antitumour mechanisms of the drugs, we per-
formed RNA-seq analysis and observed that the transcription of a 
number of genes and the corresponding signalling pathways were 
considerably influenced. The heat maps for TMZ and 56MESS 
displayed distinct patterns (Fig. 6a and Supplementary Dataset 1), 
indicating that their mechanisms of action were different. This is 
also evidenced by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis (Fig. 6b). We found some 
signalling pathways to be greatly altered in the 56MESS group 
(Supplementary Fig. 13) but not in the TMZ group (Supplementary 
Fig. 12), including the Fanconi anaemia pathway, metabolic pathways 
(805 out of 1,923 genes) and mTOR signalling pathways. Fanconi 
anaemia proteins have critical roles in the repair of DNA interstrand 
crosslinks, such as those induced by platinum-based compounds, 
and thus this finding is consistent with the differential DNA lesions 
induced by TMZ versus 56MESS55. To investigate the metabolic 
alterations induced by 56MESS, we conducted a metabolomic analy-
sis and noted that histidine metabolism was markedly changed by 
56MESS treatment. No significant difference was detected compar-
ing the 56MESS group with the NP-56MESS group (Fig. 7).

Bioreducible polymers have been used to deliver agents for effec-
tive treatment of head and neck carcinomas56, breast cancer57, liver 
cancer58, ovarian cancer59 and GBM60. For example, carboxymethyl 
dextran derivatives linked with lithocholic acid through disulfide 
bonds have been synthesized for in vivo delivery of doxorubicin56. 
The hydrophobicity of lithocholic acid enabled the conjugates 
to form NPs encapsulated with doxorubicin. In addition, hydro-
lytically cleavable ester bonds were incorporated into polymeric 
nanoparticles to enhance the release of cancer stem cell-regulating 
microRNAs.

In this study we addressed multiple challenges in the treatment of 
GBM. First, we synthesized an oxaliplatin prodrug OxaPt(iv) and a 
cationic platinum drug 56MESS that effectively inhibited the growth 
of TMZ-resistant GBM cells. Moreover, poly (CHTA-co-HD)-PEG 
incorporating disulfide bonds and pendent pairwise carboxyl groups 
was synthesized through a single-step reaction for effective encap-
sulation of 56MESS in non-neoplastic conditions, rapid cellular 
uptake and selective release 56MESS in the reductive environment 

of cancer cells. In addition, CED, a delivery approach being widely 
tested in clinical trials, was implemented to carry the drugs into the 
region of interest, bypassing the blood–brain barrier and enhanc-
ing drug distribution. Genome-wide RNA profiling and metabo-
lome analysis uncovered the transcriptional and metabolic changes 
resulting from 56MESS treatment, confirming that its mechanism 
of action was distinct from that of TMZ. Together, CED of disul-
fide NPs with a cationic DNA intercalator substantially prolonged 
the survival of mice bearing TMZ-resistant GBM tumours without 
detectable systemic toxicity. Future research will include validation 
of the therapeutic efficacies of NP-56MESS with PDX models61–65, 
identification of its molecular target66, potential improvement of 
the polymer with a targeting component for GBM67 and assessment 
of neurotoxicity by behavioural assays68. We envision that the inte-
grated approach presented in this proof-of-concept study could lead 
to promising avenues for the treatment of refractory GBM.

Methods
Materials. Dimethylformamide, dimethyl sulfoxide, oxaliplatin, hydrogen 
peroxide, dodecyl isocyanate, potassium tetrachloroplatinate(ii), 1S,2S- 
diaminocyclohexane and 2-hydroxyethyl disulfide were purchased from 
Sigma-Aldrich. GSH (catalogue (cat.) no. 78259) and DiI (cat. no. D282) were 
purchased from Thermo Fisher Scientific. aCSF (cat. no. 59-7316) was procured 
from Harvard Apparatus. Isoflurane (SKU 029405), ketamine (SKU 056344), 
xylazine (SKU 061035), meloxicam (SKU 049755) and buprenorphine (SKU 
055175) were purchased from Covetrus.

Bone wax (W31G) was obtained from Ethicon. Reflex 9 mm wound clips 
were from CellPoint Scientific. Triple antibiotic ointment (cat. no. 9004788) was 
obtained from Henry Schein. Polyimide microbore tubing (TPI-34×12) was 
bought from Professional Plastics. Epoxy 907 adhesive system was acquired from 
Miller-Stephenson. Betadine solution swabsticks were obtained from Betadine. 
Puralube vet ointment (17033-211-38) was procured from Dechra Veterinary 
Products. Luciferin (122799) was purchased from Perkin Elmer.

Instruments. Proton nuclear magnetic resonance (1H NMR) and 13C NMR 
spectra were completed using a 300 MHz NMR. Matrix-assisted laser desorption–
ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was conducted 
with an Autoflex III (Bruker). The hydrodynamic diameter of each NP formulation 
was measured by dynamic light scattering (Malvern Panalytical). Flow cytometry 
experiments were performed using the Attune NxT. An Olympus confocal 
microscope was used for fluorescence imaging. An IVIS system (Perkin Elmer) was 
used to monitor tumour growth in vivo. A stereotaxic frame with UMP3 system 
(TAXIC-600), a mouse adapter (cat. no. 502063) and a micro drill (503598) were 
obtained from World Precision Instruments. A reflex skin closure system (72-
6060 to 72-6064) were purchased from Harvard Apparatus. A vacuum centrifuge 
concentrator (SPD120) was from procured from Thermo Fisher Scientific. The 
MALDI-TOF-MS instrument (Autoflex III) was acquired from Bruker.

Synthesis of OxaPt(iv). To prepare OxaPt(iv)-OH, 0.5 g of oxaliplatin was 
suspended in 20 ml of H2O2 (30% w/v). The resulting solution was stirred at 50 °C 
until it was clear. After the solution was cooled to room temperature, needle-like 
crystals precipitated. The crystals were washed with acetone and dried in a 
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desiccator. Afterwards, oxaliplatin(iv)-OH was isolated. To prepare OxaPt(iv), 
400 mg of OxaPt(iv)-OH was suspended in 5 ml of anhydrous dimethylformamide 
(DMF), followed by adding 0.744 ml of dodecyl isocyanate to the mixture. The 
solution was stirred at 110 °C until it was clear. The solution was then added 
into ice water to precipitate the reaction product. The product was washed with 
acetone, diethyl ether and dried under the vacuum to obtain OxaPt(iv) (45%). 1H 
NMR (300 MHz, DMSO) δ 9.70 (s, 2H), 8.43 (s, 2H), 6.74 (s, 2H), 2.89 (tt, J = 13.2, 
6.7 Hz, 4H), 2.56 (d, J = 1.4 Hz, 2H), 2.17 (d, J = 11.8 Hz, 2H), 1.52 (d, J = 4.8 Hz, 
2H), 1.27 (d, J = 20.2 Hz, 44H), 0.85 (t, J = 6.2 Hz, 6H). High-resolution mass 
spectrometry for C34H66N4NaO8Pt, calculated: 876.4423, observed: 876.4421.

Synthesis of 56MESS. The synthesis and characterization of 56MESS were 
performed as described69.

Synthesis of poly (CHTA-co-HD)-PEG. Five millilitres of DMF was used 
to dissolve 89 mg of 2-hydroxyethyl disulfide and 96 mg of 1,2,4,5-cyclo
hexanetetracarboxylic dianhydride. The reaction proceeded for 24 h under nitrogen 
protection. Afterwards, 200 mg of PEG2K-OH (0.02 mmol) was added to the system. 
The reaction proceeded at 50 °C overnight. Five to ten millilitres of diH2O was 
added to the system, after which the product was dialysed for 48 h and lyophilized.

Preparation and characterization of NPs. Poly (CHTA-co-HD)-PEG (100 mg) 
was dissolved in 1 ml of DMF. One millilitre of DMSO was used to dissolve DiI 
(10 mg ml−1), 56MESS (1.5 mg ml−1) and OxaPt(iv) (15 mg ml−1). Dil (100 μl), 
polymer (400 μl), DMF (400 μl) and DMSO(100 μl) were mixed together in a glass 
vial. OxaPt(iv) (66.7 μl), polymer (400 μl), DMF (400 μl) and DMSO(133.3 μl) 
were added to a glass vial. 56MESS (600 μl) and polymer (400 μl) were mixed. The 
mixture was added dropwise to 3 ml of deionized water in a glass vial with stirring 
at 1,000 r.p.m. at room temperature, followed by stirring for 2 h in a fume hood to 
remove organic solvent. Afterwards, the mixture and 3 ml of deionized water were 
transferred to a filter (Amicon, cat. no. UFC910024) and centrifuged at 2,500g for 
30 min. The NPs were resuspended in 5 ml of deionized water and centrifuged at 
2,500g for 30 min. This step was repeated twice to remove organic solvent. Finally, 
the NPs were resuspended in 1 ml of deionized water or aCSF depending on the 
experiment. The hydrodynamic diameter, polydispersity index and surface charge 
of the NPs were measured by dynamic light scattering (Malvern Panalytical). NPs 
were incubated at 37 °C. Ten microlitres of solution was collected at various time 
points to assess stability of NPs.

Release of 56MESS and OxaPt(iv) from NPs. A filter (Thermo Fisher Scientific, 
Slide-A-Lyzer mini dialysis device, 0.5 ml, 10 K MWCO) was placed in a well of a 
24-well plate. One and a half ml of 0.5 mM GSH, 5 mM GSH, 20 mM GSH solution 
or aCSF was added to each well, followed by addition of 200 µl NP-56MESS or 
NP-OxaPt(iv) to each filter. The 24-well plate was incubated at 37 °C. The release 
of 56MESS and OxaPt(iv) was evaluated using the same protocol. Using 56MESS 
as an example, 10 µl of aCSF solution was collected from the wells at various time 
points (0 h, 1 h, 2 h, 3 h, 6 h, 9 h, 18 h, 30 h, 48 h and 72 h) to measure 56MESS 
concentration (Ct) by inductively coupled plasma mass spectrometry (ICP-MS, 
Perkin Elmer ICP-MS Elan DRC-e). The volume (Vt) of the aCSF in each well was 
also measured at each time point. The amount of 56MESS (Wt) equals Ct × Vt. The 
percentage of drug release at time point t equals Wt/W0 × 100%. W0 represents the 
weight of 56MESS in the original 200 µl of NP solution.

Cell culture. LN229 and PDX (G22) cells were acquired from R. Bindra (Yale 
University). LN229-TR (MGMT+) cells, engineered by transfecting LN229 cells 
with MGMT in the pSV2MGMT vector and selecting with 1.5 mg ml−1 G418, were 
obtained from B. Kaina3. U87 and F98 cells were purchased from ATCC. U87-RFP 
cells were from H. Xiao (Chinese Academy of Sciences). Cells were cultured in 
DMEM medium supplemented with 10% FBS and 1% penicillin-streptomycin at 
37 °C with 5% (v/v) CO2 in a humidified atmosphere.

Generation of LN229-TR-LUC cells. The luciferase vectors were generous 
gifts from J. Ding (Harvard Medical School). HEK 293 cells were seeded in a 
10 cm tissue culture dish. Transduction was performed when the cells reached 
70% confluence. Solution A was made of 500 µl of Opti-MEM (Thermo Fisher 
Scientific, cat. no. 31985070), 4 µg pMSCV-Lenti-Luc, 2 µg MPMG, 2 µg plasmid 
encoding regulator of expression of virion protein (Rev), 2 µg plasmid expressing 
transactivator of transcription (TAT) and 2 µg plasmid expressing the spike 
glycoprotein of the vesicular stomatitis virus (VSV-G). Solution B comprised 
500 µl of Opti-MEM and 36 µl of Lipofectamine 2000 (Thermo Fisher Scientific, 
cat. no.11668027). Solution A and B were mixed, incubated at room temperature 
for 20 min and added to the tissue culture dish. The culture medium was removed 
and replaced with fresh culture 12 h later. Three days later, the culture medium was 
collected and centrifuged at 2,000g for 5 min. LN229-TR cells were seeded into 
a 6-well plate. When the cells reached 30% confluence, 1 ml of culture medium 
containing viruses was added to each well in combination with 1 ml of fresh culture 
medium without penicillin-streptomycin and 1% hexadimethrine bromide. The 
6-well plate was centrifuged at 2,000g for 15 min. Three days later, the culture 
medium was replaced with medium containing 5 µg ml−1 puromycin. Three days 

later, 1 µg ml−1 puromycin was used to maintain the cell line. Luciferase activity was 
evaluated by an in vitro assay described below.

In vitro evaluation of LN229-TR-LUC cells. A Luciferase Assay System (Promega, 
E1500) was used for this assay. The cells in a 10 cm tissue culture dish were 
rinsed with 5 ml of PBS after removal of growth medium. The cells were collected 
after trypsin digestion and counted. Different amounts of cells (38,500, 44,000, 
49,500 and 55,000) were transferred to 1.5 ml Eppendorf tubes and centrifuged at 
3,000g for 5 min. The supernatant was removed followed by addition of 20 μl of 
cell lysis buffer. The solution was pipetted 10 times allowing the cells to be lysed 
and incubated on ice for 10 min. The tubes were centrifuged at 3,000g for 5 min. 
Afterwards, the supernatant was transferred to a 96-well plate followed by addition 
of 100 μl luciferase assay reagent and measurement of bioluminescence signal with 
a SpectraMax microplate reader.

Growth-delay assay. One-thousand cells were seeded in each well of a 96-well 
plate followed by addition of drugs 24 h later. The cells were cultured at 37 °C for 
6 d, then fixed with 4% paraformaldehyde and stained with 0.2 μg ml−1 DAPI on 
day 7. The number of cells was counted with a Cytation5 image reader. The data 
was analysed using CellProfiler and plotted with Prism 8.

Cellular uptake of NP-Dil examined by flow cytometry. One-hundred-thousand 
cells were seeded in each well of a 6-well plate. Twelve hours later, 5 μl NP-Dil was 
added to one well for an 18 h incubation before evaluation by flow cytometry at the 
end point. Twelve hours, 6 h and 0.5 h before the end point, 5 μl NP-Dil was added 
to other wells. NP-Dil was added in this manner to make sure all the samples were 
collected and assessed around the same time. The cells were washed with 1 ml of 
PBS three times and digested with 1 ml of 0.25% Trypsin-EDTA at 37 °C for 5 min, 
followed by addition of 1 ml of culture medium, centrifugation at 1,500g for 5 min, 
resuspension with 500 μl of PBS, and analysis with the channel BL3 (excitation, 
549 nm; emission, 565 nm) of a flow cytometer. Gating was performed using forward 
scatter channel and side scatter channel to identify cells of interest and singlets.

Confocal microscopy. Cover slips (Matsunami 15 mm diameter) were placed  
in a 24-well plate. Ten-thousand cells were seeded in each well of the plate.  
Cells were incubated with NPs for 12 h followed by fixation in 4% 
paraformaldehyde and staining with DAPI and Alexa Fluor 488 Phalloidin 
(Thermo Fisher Scientific, cat. no. A12379). Fluorescent images were taken  
using an Olympus confocal microscope.

Characterization of the subcellular localization of NP-DiI. Ten-thousand 
LN229-TS cells were seeded into one well of a 24-well plate, followed by addition of 
NP-DiI (2 µl) 12 h later. Cells were rinsed with PBS twice (500 µl each) followed by 
fixation with 4% paraformaldehyde at 30 min, 2 h and 24 h after addition of NP-DiI. 
Afterwards, the cells were rinsed with PBS three times, incubated in blocking 
buffer (1×PBS, 5% BSA, 0.3% Triton X-100) at room temperature for 1 h followed 
by three washes with PBS and staining with an EEA1 antibody (CST, cat. no. 
3288 S, 1:200 in antibody dilution buffer (1×PBS, 1% BSA, 0.3% Triton X-100) at 
4 °C for 24 h. Afterwards, the cells were washed with PBS three times (5 min each), 
incubated with secondary antibody at room temperature for 1.5 h and washed with 
PBS three times (5 min each). Prolong Gold Antifade Reagent with DAPI (CST, cat. 
no. 8961, 5 µl) was used to mount the cells. Images of cells were collected using a 
confocal microscope (Olympus, ×100 oil objective).

Animal survival experiment. All procedures were approved by the Yale University 
Institutional Animal Care and Use Committee and performed in accordance with 
the guidelines and policies of the Yale Animal Resource Center. Female mice from 
Charles River (Fox chase SCID beige, strain code 250, 4 weeks old) were used 
for the survival experiments. The procedures for CED were detailed in previous 
publications70,71. In brief, mice were anaesthetized with an intraperitoneal injection 
of a ketamine/xylazine mixture (100 mg kg−1 ketamine, 10 mg kg−1 xylazine), 
followed by a pre-emptive dose (15 min) of buprenorphine (0.06 mg kg−1) and 
meloxicam (0.3 mg kg−1). Mice were then restrained using a stereotaxic frame for 
an aseptic rodent survival surgery and craniotomy. A hole was drilled at 1 mm 
lateral from the bregma, 1 mm anterior and 2 mm deep from the outer border of the 
cranium. A total of 1.25 × 105 LN229-TR-LUC cells were suspended in 3 µl of PBS 
and injected intracranially over 3 min on day 0. Three more doses of buprenorphine 
(0.06 mg kg−1, every 12 h) and one more dose of meloxicam (0.3 mg kg−1) were 
intraperitoneally administrated for post-operative care. Tumours grew for 4 d before 
being subjected to different therapeutic treatments. Specifically, for the mice in 
the TMZ group, TMZ was administered by intraperitoneal injection weekly. For 
the mice in other groups, a single dose of PBS or drugs (4 µl) was given through 
CED at 0.5 µl min−1. Tumour growth was monitored by IVIS imaging. IVIS images 
were collected 17 min after injection of luciferin (Perkin Elmer, cat. no.122799, 
30 mg ml−1, 100 µl per mouse). The bioluminescent signal was recorded as photon s−1.

In vivo biodistribution of NPs. CED of NP-56MESS-FITC was performed 4 d 
after intracranial implantation of U87-RFP (125,000 cells per mouse). Mouse 
brains were collected, flash-frozen, and cryo-sectioned (50 µm per slide) 4 h after 
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CED. The same slide was imaged sequentially for assessment of RFP and GFP by 
fluorescence microscopy and Pt by ICP-MS where brain tissue was ablated and 
gasified by the laser beam. Though samples could be slightly distorted due to 
dehydration, downstream analysis was not vastly affected. The volumes of NP-
56MESS-FTIC and U87-RFP were quantified using MATLAB.

RNA-seq analysis. LN229-TS cells were treated with PBS, TMZ (2 µM), 56MESS 
(1.1 µM) or NP-56MESS (0.6 µM) for 36 h. Three distinct samples, 1 million 
cells per sample, from each treatment group were collected to purify RNA. The 
RNA quality was confirmed using a NanoDrop 2000/c Spectrophotometer. 
The sequencing data was submitted to the National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (SRA) database (Bioproject ID 
PRJNA668337), which will be released upon publication. BGISEQ-500 was 
employed for sequencing. RSEM was used to quantify the transcription levels of 
genes. To compare two treatment groups, the differentially expressed genes were 
identified when the fold change was greater than or equal to 2 and q value less than 
or equal to 0.001. Only representative genes were presented in the heat map due 
to limited space. R packages ggplot2 and ggthemes were used to generate volcano 
graphs. The heat map was plotted by pheatmap. R phyper was used for KEGG 
enrichment analysis. Significant enrichments were identified when the q value was 
less than or equal to 0.05. Only top sixty pathways were displayed due to limited 
space. Cytoscape was used to generate protein–protein interaction networks.

Metabolic pathway analysis. LN229-TS cells were treated with PBS, TMZ (2 µM), 
56MESS (1.1 µM) or NP-56MESS (0.6 µM) for 36 h. Three samples, 5 million cells 
per sample from each treatment group were collected. One-hundred microlitres 
of H2O was added to each cell pellet to resuspend the cells followed by addition of 
180 µl of methanol and 120 µl of chloroform. Samples were vortexed for 1 min and 
incubated at room temperature for 5 min. Afterwards, 150 µl of H2O was added, 
followed by vortexing for 1 min and incubation at room temperature for 5 min 
and centrifugation at 10,000g for 10 min. Three-hundred-and-fifty microlitres of 
supernatant was collected and spun in a vacuum centrifuge concentrator at 225g 
at room temperature for 5 h. Forty microlitres of 20 mM of ammonium acetate in 
H2O was added for resuspension. MALDI-TOF MS and MetabolAnalyst were used 
for metabolic pathway analysis72. Metabolites were identified when the fold change 
was greater than or equal to 2 and q value less than or equal to 0.05.

Statistics. All statistical analyses were completed using GraphPad Prism 6. 
Statistical tests and P values are detailed in figure legends. Error bars represent s.d.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the findings of this study  
are available within the paper and its Supplementary Information. The raw  
data generated for the RNA-seq analysis are available from the NCBI SRA  
database under the accession code PRJNA668337. The metabolomic dataset 
generated during the study is too large (2.3 GB) to be publicly shared, but the  
data are available for research purposes from the corresponding authors on 
reasonable request.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Detailed descriptions are included in Methods. Briefly, Malvern Panalytical was used to collect the sizes, polydispersity indexes and zeta 
potentials of nanoparticles. Fluorescence images were collected using an Olympus confocal microscope (100x). MALDI-TOF-MS data were 
collected using an Autoflex III (Bruker). An IVIS (Perkin Elmer) was used to monitor tumour growth. A SpectraMax microplate reader was used 
to determine cell viability. An Attune NxT flow cytometer was used to assess nanoparticle uptake. 

Data analysis The data were analysed using CellProfiler and GraphPad Prism 6. RSEM was used to quantify the transcription levels of genes. R packages 
ggplot2 and ggthemes were used to generate volcano graphs. The heatmap was plotted by pheatmap. R phyper was used for KEGG 
enrichment analysis. Cytoscape were untilized to generate protein–protein interaction networks. ImageJ was used to analyse haematoxylin 
and eosin images. Olympus confocal images were analysed using FV3000 software. FlowJo was used to analyse flow-cytometry data. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The authors declare that the main data supporting the findings of this study are available within the paper and its Supplementary Information. The raw data 
generated for the RNA-seq analysis is available from the NCBI Sequence Read Archive database under the accession code PRJNA668337. The metabolomic dataset 
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generated during the study is too large (2.3 GB) to be publicly shared, yet the data are available for research purposes from the corresponding authors on 
reasonable request.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We selected sample sizes to make the statistical power greater than 0.8. 

Data exclusions No data were excluded from the experiments.

Replication All experimental findings, including material characterization and animal experiments, were reliably reproduced. 

Randomization Experimental groups were formed on the basis of what was being tested, with random selections. Materials, cells and animals were randomly 
divided into multiple groups.

Blinding The investigators were blinded to group allocation during data collection.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used EEA1 antibody (CST, Cat. 3288S) was used to characterize the intracellular uptake of the nanoparticles.

Validation Validation of each antibody was done under standard information offered by the supplier.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) LN229 and PDX (G22) cells were acquired from Dr. Ranjit Bindra at Yale University. LN229-TR (MGMT+) cells were obtained 
from Dr. Bernd Kaina. U87 and F98 cells were purchased from ATCC. U87-RFP cells were from Dr. Haihua Xiao. 

Authentication Cell line authentication was initially performed by ATCC. 

Mycoplasma contamination Cell lines were tested for mycoplasma contamination in the Clinical Virology Laboratory at Yale University. 

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used. 
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Female mice from Charles River (Fox chase SCID beige, strain code 250, 4 weeks old) were used for the survival experiments.

Wild animals The study did not involve wild animals. 

Field-collected samples The study did not involve samples collected from the field. 

Ethics oversight All procedures were approved by the Yale University Institutional Animal Care and Use Committee (IACUC) and performed in 
accordance with the guidelines and policies of the Yale Animal Resource Center (YARC). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation One hundred thousand cells were seeded in each well of a 6-well plate. Twelve hours later, cells were incubated with 
nanoparticles. Afterwards, the cells were washed with PBS, digested with Trypsin-EDTA, centrifuged and resuspened with PBS 
before evaluation with flow cytometry.

Instrument Attune NxT flow cytometer from Thermo Fisher Scientific.

Software FlowJo

Cell population abundance Live cells were more than 98% of the population in the all groups. 

Gating strategy Gating was performed using forward scatter channel and side scatter channel to identify cells of interest and singlets. BL3 
(excitation=549 nm, emission=565 nm) was used to detect fluorescent nanoparticles. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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